
Modified solenoid scattering for the Aharonov-Bohm effect

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 3309

(http://iopscience.iop.org/0305-4470/20/11/034)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 20 (1987) 3309-3326. Printed in the UK 

Modified solenoid scattering for the Aharonov-Bohm effect 
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National University, Canberra, ACT 2601, Australia 

Received 8 May 1986, in final form 5 January 1987 

Abstract. A method of partial-wave analysis is used to extend the treatment of Aharonov 
and Bohm for the scattering from an unscreened solenoid of infinitesimal radius to include 
screening and non-zero radius. The method yields a scattering amplitude which bears a 
formal resemblance to that appropriate to modified Coulomb scattering. The scattering 
amplitude and the momentum transfer cross section retain a dependence on the enclosed 
flux as the screening barrier becomes infinite, resulting in a component of force, periodic 
in the enclosed flux, being exerted on the barrier. The resulting implications concerning 
the locality of electromagnetic interactions are discussed. The force is shown to persist 
when the conditions of strict impenetrability are relaxed and the possibility of directly 
observing this quantum force is examined. 

1. Introduction 

The effects (henceforth AB effects) of ‘enclosed’ electromagnetic fluxes, on charges 
which are excluded by barriers from entering the flux-containing regions, first achieved 
prominence in a paper by Aharonov and Bohm (1959) (henceforth referred to as AB).  

Most of the debate (see Olariu and Popescu (1985) (henceforth referred to as OP) for 
a comprehensive review) stemming from this provocative paper, and all the associated 
experimental work (OP, 0 111) has been concerned with interference effects. Although 
a non-zero momentum$ transfer cross section, periodic in the enclosed flux, was a 
striking implication of the AB analysis of the solenoid scattering problem which they 
used to illustrate their arguments, no attempt to detect such forces experimentally, nor 
to theoretically assess their detectability, has been reported. To some extent this reflects 
the limitations of the A B  ‘magnetic string’ model which is valid (Brown 1985) only for 
electron wavelengths which are very long compared to the solenoid radius, a condition 
which appears experimentally unapproachable. In addition, the absence of a shielding 
barrier in this model meant that a local mechanism to account for the force was lacking, 
leaving the reality of its existence open to doubt. 

More realistic models of a solenoid surrounded by cylindrical barriers of non- 
vanishing dimensions have been considered by Kretzschmar (1965), Berry et al (1980), 
Olariu and Popescu (1983), Brown (1985) and OP ( 5  I1 F), but the form of the scattering 
amplitude, momentum transfer cross section, etc, was not investigated. Peshkin et a1 
(1961) and Tassie (1963) have considered two-cylinder and toroidal configurations, 

f Permanent address: School of Mathematics and Physics, Macquarie University, North Ryde, NSW 2113, 
Australia. 
4 Throughout this paper ‘momentum’ means kinetic momentum, i.e. the product of mass and velocity. 
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respectively, using symmetry arguments to study the case of half-integral flux parameter, 
a; they showed that the total cross sections (which are finite for the configurations 
studied) displayed a periodic dependence on the enclosed flux. Despite such 
demonstrations the situation remains clouded-Olariu and Popescu (1983) have 
recently claimed that there is no momentum transfer for the magnetic string case but 
(OP, p 372) have more recently revised this opinion. The assessment by OP of the 
matter is somewhat confusing. In 9 I G of their review they conclude that the ‘total 
kinetic momentum is not changed by distributions of enclosed electromagnetic fields’. 
Such a conclusion, based on their equation (1.89), is valid only if all electromagnetic 
fields are enclosed-a situation which is physically empty since the fields associated 
with excluding barriers themselves, and/or slits, must be accessible to the electron 
undergoing a scattering or interference process in order to be effective, whether or not 
there is any enclosed flux. In general, enclosed flux can influence momentum transfer 
through the mediation of other (accessible) fields E or B. This mechanism, which is 
not new (see Peshkin er a1 1961, Aharonov and Bohm 1961) is strikingly illustrated 
for the scattering problem considered in the present paper by a version of Ehrenfest’s 
theorem (Brown 1986) which relates the momentum transfer cross section U,, directly 
to the expectation value (with respect to the scattering wavefunction $) of the Lorentz 
force. Expressed by (5.2) this shows (in the solenoid case) that even if $ = 0 wherever 
B # 0 the magnetic flux still influences U,, via the field E associated with the excluding 
barrier, because $ depends (through the Schrodinger equation) on the vector potential 
field which is everywhere non-vanishing. It is presumably such effects to which OP 

refer in the final paragraph of their § I1 F. 
The aim of the present paper is to provide a general solution of the screened-solenoid 

problem, permitting it to be discussed in a wavelength range which is experimentally 
feasible and allowing the quantum effects of the flux to be gauged when the condition 
of impenetrability of the barriers is relaxed. Our analysis is based on the partial wave 
treatment of Kretzschmar (1965) but also preserves strong links with the original 
solution of AB. 

The scattering solution for a rectangular screening potential barrier is obtained in 
§ 2. Its asymptotic form is identical to that of the AB magnetic string solution but the 
scattering amplitude depends on the details of the screening in a way which bears a 
formal resemblance to the case of ‘modified Coulomb scattering’ (Joachain 1975,O 6.3). 
The extension of this analysis to apply to any screening potential of finite range is 
briefly sketched. As the screening potential becomes infinite (0 3) the scattering ampli- 
tude displays an AB effect, i.e. it retains a dependence on the enclosed magnetic flux 
and this dependence becomes periodic, with the period h / e  of the flux quantum. The 
same is true of ut,, resulting in the shielding barrier experiencing an additional force 
depending periodically on the enclosed flux. In 9 4 this force is further discussed with 
regard to its continued existence when the condition of strict impenetrability of the 
barrier is relaxed, and with regard to its possible observation. The role of the local 
Maxwellian fields E and B in mediating this flux-dependent quantum force is investi- 
gated in § 5 and our conclusions are briefly summarised in 0 6. 

2. Partial wave analysis of solenoid scattering 

The aim of this section is to extend the analysis of AB for scattering from an unscreened 
magnetic string to the case of a screened solenoid of non-zero radius r,,. To obtain 
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mathematical tractability and to preserve the framework used by most other workers 
we retain the idealisation of infinite solenoid length L. This may be justified by assuming 
that all the apparatus (filament, electron gun, detectors, etc) involved in the conceptual 
scattering experiment lies within some finite region Y filling the space r s R between 
the axial limits - b < z s b. By taking finite L >> max( R, 2 b )  we can reduce the magnetic 
induction field B = V x A throughout So( R 3 r 3 ro; - b S z s b )  to arbitrarily small 
values and at the same time ensure that further increases in L have arbitrarily small 
effects on the values of B and A throughout 9’. We may conclude that letting L + 00 

cannot materially affect the motion of electrons in 9’; to conclude otherwise would 
imply a type of non-locality which is far more extreme than has previously entered 
discussions of the AB effect and which evidently would violate causality. 

Following Kretzschmar (1965) and Brown (1985) we consider the scattering sol- 
utions t+b(r, e )  for the energy eigenstates of the two-dimensional system described by 

This equation applies to a charge q having mass m and energy E = h2k2/2m moving 
under the combined influences of an electrostatic potential (energy) field V and a 
magnetostatic vector potential field A with components (in Coulomb gauge and S I  units) 

A, = 0 AB = 4 / 2 n r  r 3 ro 

= 4r12m-i r S  ro.  ( 2 . 2 )  

We henceforth assumet for simplicity and definiteness that 

V =  U( h 2 k 2 / 2 m )  = constant r S ro 

= O  r >  ro (2 .3)  
although, as discussed below, our results may be proved for any potential function 
V ( r )  which is of ‘finite range’, i.e. for which V vanishes if r exceeds some finite value. 

To solve (2.1) we write quite generally 

and find in the region outside the solenoid 

5 n ( r )  = Q n 4 n + u l ( k r )  +bnyn+u,(kr) r b  ro ( 2 . 5 )  
where CY = - q + / h  and J (  Y )  denote Bessel functions of the first (second) kind. The 
continuity of + and Orl, at r = ro yields 

where J : =  a J , ( x ) / a x ,  etc, and kA, = kA,(kro, cy, U )  is the logarithmic derivative of the 
‘interior’ ( r  ro) radial partial wavefunction evaluated at r = ro; it is given by (cf Brown 
1985, equation ( A l . l ) )  

kroAn = in1 - CY + 2 a  (2 .7a )  

t Such a barrier may be approximately constructed by surrounding the solenoid by a coaxial cylindrical 
capacitor with plates at ro and ro+ 6r, Sr<c ro .  
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where 

2 4  = 1 + n +In1 - k2ri(l  - v ) / 2 ( ~  c, = 1 + I n [  

and 

d d ( d  + 1 )  z2 
c c ( c + l )  2! 

@ ( d ,  c; z)  = 1+-z+- -+. . . 

(2.7b) 

( 2 . 7 ~ )  

is the confluent hypergeometric series (Erdelyi et a1 1953, § 6.1). The values of a, and 
b, are further restricted by requiring that (2.4) asymptotically represent, when multi- 
plied by exp(-iEt/ h ) ,  a superposition of a wave of spatially constant amplitude 
(representing the incident beam) and an  outward propagating ‘scattered’ wave. We 
show in the remainder of this section that the choice 

a, = cos A,, exp(ip,,) b, = -sin A,, exp(ip,) p n  = 6, + n(i7f-  6,) (2.8) 

in which 
of the incident beam, satisfies this requirement. Here 

is an  arbitrary constant which represents the direction of propagation k^ 

8, = 8; = titB+ A, (2.9a) 

where 

s f”=  ( n  -ln+al).rr/2 (2.9b) 

denotes the phase shift in the nth partial wave (relative to the cylindrical components 
of the plane wave exp(ik r ) ) .  The ‘core’ contribution A, = A: due  to the non-vanishing 
kr, and v is defined by 

(2.10a) 

and it is evident from the way A,, enters (2.8) that this modulo-.rr definition is sufficient. 
It follows from ( 2 . 7 ~ )  and Kummer’s transformation (Erdelyi er al 1953, § 6.3) that 
A, , ( - (u)  = A - , , ( a )  and hence, using (2.6) and (2.10a), that 

A i a  = A ? , .  (2. lob)  

tan A,, = R,,( kr,, a, U )  

We introduce the AB magnetic string solutiont 

ic 

+ A B =  + tB( r ,  e; (U) = C exp[in(e - e k  + .rr/2)] exp(i8tB)Jn+,,(kr) (2.11) 
n = - x  

and use it with (2.81, (2.5) and (2.4) to find, for r 3  r,, 
lr + = cLk(r, e ;  (U) = ( L A B + i  1 exp[in(o - ek + .rr/2)] exp(i8,) sin ~ , , H [ i ; ~ ; ( k r )  (2.12) 

n=--lc 

where H”’  = J + i Y and the convergence of the sums in (2.1 1 )  and (2.12) may readily 
be confirmed. 

The asymptotic behaviour of + for kr >> 1 may be studied using (2.11) and (2.12). 
We first note the asymptotic form (Watson 1944, § 7.21) 

~ l ” ( x ) ~ ~ , ( x ) + i ~ , ( x ) - ( 2 / . i r x ) ” *  exp{i[x-(~+f) .rr/21}+0(x-~’~)  (2.13) 

t On using (2.9) and setting 0, = x, as considered by AB, (2.1 1 )  yields the solution which was studied by AB. 
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in which the remainder terms are negligible provided 1x1 >> Iv(’; hence it can be usefully 
applied only to those terms of (2.11) and (2.12) for which In+a12<c kr. Choosing any 
integer M 3 1 and satisfying 

IMI 3 la1 and IMi-lal<< (kr)”’  (2.14) 

we partition (2.12) according to 

(2.15) 

For each term of the finite sum in (2.15) we may use (2.13). Then (2.12) becomes 

where 

exp( -i7r/4) 
f M - l @ -  6,) = C exp(2i8tB)[exp(2iA,) - 11 exp[in(6 - e,)] (2.17) 

( 2 ~ k ) ” ’  I n 1 s M - l  

and where 

C = i exp[in(6 - 61, + ~ / 4 ) ]  exp(i8,) sin A n H [ ~ ~ a l ( k r ) .  (2.18) 
M * M  

In appendix 1 we show that not only does A, + 0 as In/ -+ CO, thereby ensuring the 
convergence of (2.17) as M + CO, but also that it vanishes sufficiently fast to ensure 
that r”’ (Z, +ZL)  < E for any E > 0 provided M > M ’  ( a ,  kr, ,  U, E )  which is indepen- 
dent of r when kr exceeds some x,. As a result we can proceed directly to the limit 
of (2.16) where first r + CO and then M + CO, obtaining 

(2.19) 

wheref= limM+= f M - l .  On using the well known asymptotic form of the A B  solution, 
valid when kr[  1 - cos( 6 - e,)] >> 1 

Iim ($ -  +AB)r”2 exp(-ikr) = f ( 6  - 6,) 
T ’ X I  

4IAB-exp[-ia(6-6,+ T ) ]  exp(ik. r)+exp(ikr)r-”’fAB(6- 6,) 

+-exp[-ia(6- & + T ) ]  exp(ik* r)+exp(ikr)r-”’F;:(e- 6,) 

(2.20) 

(2.21) 

we find from (2.19) 

where the total scattering amplitude is given by 

exp( -i7r/4) 
(2 n-k) ”’ FE( 6 - 6,) = fAB(  6 - 6,) + 

x exp[in-(n -1n+al)][exp(2iA,)-11 exp[in(e-@k)]. (2.22) 
“=--cc 

In (2.20) and (2.21) the angle ( 6  - 6, + 7r) must be chosen in the interval ( -T,  T ) .  We 
note that the asymptotic form (2.21) clearly satisfies the conditions which were discussed 
following (2.7), thus verifying the correctness of the choice (2.8). From our derivation, 
it is clear that (2.22) also applies for any cylindrically symmetric potential which 
vanishes for all radii greater than some a > r, ,  the only difference being that in the 
functions (2.6), which determine the phase shifts, the argument of all Bessel functions 
becomes ka and the logarithmic derivative kA, of the interior solution is evaluated at 
r = a. 
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For the scattering amplitude f"" applying to the unscreened magnetic string it is 
sufficient to consider - 4 6 .  S t  since it follows from (2.11) that 

+ A B ( a + ~ ) = e x p [ - i N ( ~ - ~ k + r ) ] + A B ( a )  N any integer. (2.23) 

Then the procedure of AB leads to 

exp( r i i e ' )  
exp(ir /4)  s i n r \ a \ (  ) as a 3 0  
(27~k)"' COS ;ef O'=e-ek+,, 

f A B (  e - e,) = (2.24) 

where 8' must be chosen in the range - 7 ~  < e'<  7 ~ .  In fact, the derivation of (2.24) is 
valid in the greater range -1 s a s 1, as also follows from (2.23). However it differs 
by a constant phase factor from the scattering amplitude of AB (equation (21)) (but 
agrees with that of Kawamura et al (1982, footnote to p 1273)). The discrepancyt can 
be resolved by observing that, for the e-"' terms to vanish from the A B  equation (21), 
the (-i)"* factor in their equation (20) must be interpreted as exp(i37~/4). When this 
is done the resulting scattering amplitude becomes identical to (2.24). 

From (2.22) and (2.24) we may evaluate the momentum transfer cross section (per 
unit length of solenoid) 

(2.25) 

The physical interpretation of this quantity is such that the force component in the 
incident direction i, which is exerted on unit length of the solenoid by an incident 
beam of unit particle flux, is mua,, where v = hk/m is the speed of the incident and 
radially scattered particles at large distances from the solenoid. That this familiar 
interpretation also holds in the present case, where the vector potential enters the 
velocity operator, may be shown by considering the scattering of wavepackets, for 
example, by a procedure similar to that of Messiah (1961, ch X, § §  4,5 and 6, attributed 
to Chew and Low). 

The calculation of (2.25) is straightforward, if tedious, and yields 

apr(k) = (2/k)(SU + P") = a , " ( k )  (2.26) 

where 
cc 

S" = S-" = sin2(A, - A n - l )  
"=-cc 

and 

(2.27) 

x [2 sin A, sin A,] +sin(Ao+AT,)]. (2.28) 

The expression for P" is valid if -1 s a C 1 and the upper (lower) signs are taken 
according to whether a>O(<O). Note that in general P" is not periodic in a and 
expressions valid in other ranges of a follow from (2.28) on replacing A. and A F l  by 
higher-order phase shifts. The fact that (2.26)-(2.28) are even functions of a (all 
ranges) follows from the symmetry (2.10b). 

t The question of correctness of (2.24). both with respect to amplitude and phase, is most important in view 
of the interference between the two terms of (2.22) and the effects of such interference on, e.g., the momentum 
transfer cross section. 
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We proceed to examine the implications of (2.26)-(2.28) for the 'enclosed-flux' 
case, V-, a. 

3. Enclosed flux ( V  -, a): momentum transfer 

Our aim is to show that even when the flux is surrounded by an impenetrable barrier 
it still affects the scattering and, more particularly, the momentum transfer. For V-, a, 
the phase shifts are given by (2.17) and (2.6) as (cf Kretzschmar 1965) 

tan A: = 4, ,+dkr0) /  qn+Ql (kro ) .  (3.1) 

It is evident from (2.22) that the scattering amplitude retains a flux dependence even 
in this extreme case for which the wavefunction vanishes at all points r < ro where the 
flux density is non-zero. For example, when kro<< 1 and Jal<c. 1, (3.1) yields 

and therefore negligible (if we assume k'ricc 1.1) while 

Expanding the latter expression for small la1 yields 

where 

( 3 . 2 ~ )  

(3.2b) 

(3.3) 

(3.4) 

is the phase shift appropriate to the flux-free cylinder. These expressions show how 
the AB solution (A:=.) evolves in the limit kro+O when A:-0. They can also be 
used to study the scattering amplitude and the momentum transfer cross section in the 
long-wavelength limit. We go on to consider the practically more important short- 
wavelength region, kro >> 1. 

We observe that (3.1) implies 

(3.5) A:+I- -A:+, 

and then (2.12) yields (cf (2.23); see also Berry et a1 (1980)) 

+ ( a + N ) = e x p [ - i N ( O - e , + . r r ) ] + ( a )  N = integer. (3.6) 

It follows that CTP,'" = UP, so it is sufficient to consider henceforth 0 s  a s 1. Adopting 
(3.1) we find after some manipulations involving use of (Watson 1944, § 3.63) 

J J z )  Y"+l(Z) -Jv+1(z) Y"(Z) = -2/.rrz (3.7) 

that (2.27) may be written, when kr, >> 1, 

Sa - So = (2/ .rrkro)2( T" - To) -sin* ma (3.8) 
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where 

Q m + a Q m - l + a  Q m - a Q m - 1 - 0  

with 

QY = QY( kr,) = J t (  kr,) + Y t (  kr,,). 

(3.9) 

(3.10) 

In obtaining (3.8) we have also used 

+. * .) kr, >> n' (3.1 1) 
37T 7T 41n + a/'-  1 
4 2  ( 8(kro)' 

A, ,=-+-~n+aI-kro 1 +  

which follows+ from (3.1). 
On using (3.11) for A, and A-], (2.28) becomes 

P"(0 s a s 1) = 3 sin' im - 2 8  sin 7 ~ a  cos(2kr0 - 4 4 ) .  (3.12) 

To evaluate S" one could follow Morse and Feshbach (1953, p 1380) and adopt the 
asymptotic form (3.11) for those orders In1 s kr, which are (see § 4) effective in 
determining UP,. This procedure would be acceptable if only UP, were required but for 
calculating the small difference (UP, - U:,) the neglect of terms In1 3 kr, cannot be taken 
lightly. Adopting it one finds S" -So = -sin2 m, a result which seems plausible but 
which we have not succeeded in proving. However, by proceeding as follows we are 
able to prove inequalities sufficient for our purposes. We first note that (Watson 1944, 
§ 13.73). 

Q Y ( z )  =A loE Ko(2z sinh t )  cosh 2vt dr 
7T 

where the modified Bessel function is defined by (Watson 1944, § 13.74) 

K , ( z )  = loE exp(-z cosh t )  d t  > 0. 

(3.13) 

(3.14) 

It follows that Q v ( z )  is an increasing function of v > 0 and using this property it is 
easy to show from (3.9) that 

-(.rrkr0/2)'< Tu - T0<(7rkr0/2)' 0 S a i 1, kro >> 1 (3.15) 

and hence, using (3.8), 

-1 -sin' .rra < sa -So< 1 -sin2 7 ~ a  O s a ~ l ,  kr,>>1. (3.16) 

These inequalities are evidently very crude, at least near a = 0, 1 where S" - So = 0. 
However, putting a = $ and combining (3.16) with (3.12) we find for the momentum 

+ T h e  easiest way of obtaining (3.11) is to observe, using (3 .1) .  that A,, = s r / 2 - 4 , + , ,  where 0, is defined 
by Abramowitz and Stegun (1965, equation (9.2.17)). The asymptotic expansion (3.11) is then taken from 
their equation (9.2.29). 
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transfer cross section (2.26) when kro >> 1 

2 
-[3-2ficos(2kro-.rr/4)]> cT: /2(k) -ayr(k)  
k 

(3.17) 
2 
k > - [ 1 - 2 f i  cos( 2 kro - 1~/4)]. 

With r, of the order of tens of microns and electron wavelengths of the order of lo-’’ m 
we have kro- lo4’?. Averaging over a small spread in either electron wavelength or 
geometrical dimension will then give rise to an observed cross section a:/2 related to 
that observed in the absence of flux by 

6/  k > k )  - U;,( k )  > 2/ k (3.18) 

i.e. there is an additional$ periodic flux-dependent force, per unit length of solenoid 
and parallel to the incident beam, whose peak-to-peak amplitude, fpp, satisfies 

fpp > mvJp2/ k = 2 hJp  kr, >> 1 (3.19) 

where J p  is the particle flux in the incident beam. The appearance of h in (3.19) 
indicates the quantum nature of this effect. It is remarkable that (3.19) does not depend 
on either wavelength or solenoid radius (in the domain kro >> 1). 

If we leave the solenoid radius fixed at any radius ro and place the impenetrable 
shield at radius a > ro the above argument is unaltered except that ro is replaced by 
a. The implications of (3.19) will be discussed in § 5 .  

4. Finite screening barriers 

Our deduction of (3.19) rests on the use of (3.1) for the phase shifts and we need to 
examine the extent to which our conclusions depend on this adoption of the impen- 
etrable-barrier model, V + m ,  which is ‘unphysical’ to the extent that it represents a 
limit which may be approached but not reached. If we take it as granted that a: for 
the real physical situation (finite V) does actually possess a limit as V + C O  it is hard 
to imagine how it could differ from the cross section calculated with phase shifts (3.1). 
Nevertheless in the case of finite V, the adoption of (3.1) for all n is questionable and 
some consideration of its consequences is in order. The questions extend to the 
periodicity of the cross section also, since this was deduced from the symmetry (3.5) 
which is applicable (only?) to the AB case A,, = 0 and to the impenetrable-barrier model. 
We first show that only those phase shifts A,, up to order In1 = kro>> 1 need be 
considered§. Consider a =0: from (3.8) we see that it will suffice to show that 

t For the interference experiments of Bayh (1962), kr,- 10’. 
$ In the final paragraph of 5 I1 F of their review article OP refer to such forces as ‘secondary’ effects. This 
refers to the fact that the ‘primary’ terms in their wavefunction (2.137) reproduce the cross section U’ of 
the zero-flux case; the terms responsible for (3.19) are neglected. 
5 The same conclusion is reached by Morse and Feshbach (1953, p 1380) in the case a = 0, but the arguments 
used by these authors are not sufficiently precise for our purposes. 



3318 R A Brown 

is small compared to unity when E > 0 is small compared to unity. To prove this 
observe that when Y > x > 0, Y , ( x )  < 0 and Y : ( x )  > 0; both these results follow from 
the asymptotic form (A1.3) and the fact that there are no zeros of the functions Y , ( x )  
or Y : ( x )  for x s  Y (see Watson 1944, 5 15.81). It then follows from the recurrence 
relations for the Y (Watson 1944, § 3.56) that 

(4.2) 

Applying this relation successively one shows 

(4.3) 

On using (Watson 1944, 0 8.2) 

inequality (4.3) becomes 

This is small compared to unity if (kr0)-’I3 < E << 1,  showing that phase shifts of order 
greater than [ k r o + O ( ( k r , ) ’ / 3 ) ]  may be disregarded in calculating ay,. The same argu- 
ment applies when a f 0, showing that only those phase shifts such that In + a1 < kr, 
need be considered, e.g. it is sufficient to retain only In + a1 s 2kr0.  Now for all finite 
n it follows from (2.6) that as V+m, A,, approximates the limit (3.1) according tot  

(4.6) tan A,, = ( 1  + 7 n ) 4 n + a l ( k r o ) /  y“+ml(kro) 

where 

(4.7) 

Differentiating, we find for the error introduced into sin2(A,, -A,,-l) by the term 7, in 
(4.6) 

S[sin2(A,, - A n - l ) ]  = (7, - v,,-~) sin 2(A,, -A,,-,) 

+(7, - 7,,-1)’ cos 2 ( A n  - 4 - 1 ) .  (4.8) 

Since almost all significant contributions come from (A,, -A, , - l )  close to 7~ (Morse 
and Feshbach 1953, p 1380, see also ( 3 . 1 1 ) )  the error introduced into the sum (2 .27)  
when v < 00 is, from (4.8) and (4.7), at most 

SS = - kr,( a/ kr,Jv)’ .  (4.9) 

This leads to an error in utr of order k-’SS which is small compared to the magnitude 
of the magnetic increment (3.18) provided 

U =  V / ( h 2 k 2 / 2 m ) > > a 2 / k r o .  (4.10) 

t The study of this limit is sketched in the paragraph immediately preceding equation (5 .8)  of Brown (1985). 
The inequality attached to the latter equation (which assumes /ai<< 1 and U > >  1 )  should be kr,o”2>> 
max(1, lnal”2) .  
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From the above discussion it is clear that the force (3.19) still exists for a finite 
(repulsive) potential barrier but that the range of a over which the force is periodic 
is limited to a << amax - ( vkr,,)’’2. This condition does not impose serious constraints, 
as discussed below. 

We conclude this section by briefly considering the possibility of observing such a 
force. We start by considering the parameters appropriate to the interference experi- 
ments of Bayh (1962). Bayh used a coil of radius r ,= lOpm and 40 keV electrons 
with A = 0.06 A, resulting in kro= lo’. Relatively high energies are necessary if the 
wavenumber spread, caused mainly by work-function variations, is to be reduced below 
the value (here A k / k -  lo-’) at which the interference effects disappear due to phase 
smearing. In our case (see the discussion following (3.17)) such phase smearing need 
not be avoided and much smaller wavenumbers can be considered. Energies as low 
as E = h 2 k 2 / 2 m  = 10 eV corresponding to kro= lo3-lo4 should be usable. Then a 
repulsive barrier of order 1 kV is effectively impenetrable and, according to (4.10), the 
incremental magnetic force should display its characteristic periodicity over amax - 
102-103 cycles as the flux is increased, for example, by applying a steadily increasing 
(sawtooth) current. We emphasise that this periodicity is the unique signature of the 
sought-after quantum force, distinguishing it from classical eflects due to E or due to 
the induced E field arising from the time varying E field. The difficulty of directly 
observing the quantum force becomes evident when we consider the magnitudes of 
the forces involved. A beam current of 1 mA over an area -1 cm2 corresponds to a 
particle flux .Ip- 10” m-’s-’ which produces a steady (apart from statistical fluctu- 
ations) force per unit length F,, = rOhWp - N m-’ on which is superposed a periodic 
contribution whose amplitude, according to (3.19), is f - hJ,- N m-’, We note 
that this latter contribution does not depend on kr,, but of course the mass-dependent 
response of the system decreases with increasing r,. 

The steady F, can be automatically accommodated through the elasticity of the 
suspension but the smallness off makes detection of the quantum force appear unlikely 
unless one can find a microscopic analogue system which displays the effect. On the 
other hand, the periodicity in a, which bestows a periodicity in time, the frequency 
of which is widely adjustable (by choosing the rate of change of current and the coil 
parameters) and may be matched to that of mechanical resonance, are features which 
favour the experimenter. We also observe that our analysis was shown to apply not 
only to the potential (2.3) but to an arbitrary screening potential (of finite range). As 
a result we can dispense with the screening capacitor envisaged in Q 2 and seek the 
effects using an unscreened ferromagnetic filament or whisker, excited by an externally 
applied field. 

5. Locality-the role of E and E 

From the discussion following (3.19) we see that there is an additional force per unit 
length acting on the screening barrier at radius a, due to quantum effects of the flux 
contained in the region r < r O s  a, even when the barrier is ‘impenetrable’. This force 
increment is periodic in a (unit period) and its amplitude is indicated in (3.19). This 
confirms the remarkable prediction of A B  of force effects due to enclosed flux. Since 
it persists undiminished as the screening radius, a, increases beyond the solenoid 
radius, r , ,  the effect is manifestly not due to any penetration of thejux-containing region 
by the wavefunction. Although this is a vivid example of the ‘indirect’ action of enclosed 
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flux on charges which are excluded from it, theforce has a strictly local origin; it is an 
electrostatic force, due to the E field associated with the screening barrier and is seated 
in this barrier-as we will show after investigating the role of the electric and magnetic 
fields ( E  and B respectively) in general. 

Because of the long-range nature of a solenoid’s magnetic vector potential the 
scattering amplitude diverges as the scattering angle (0  - 6,) approaches zero, according 
to (see (2.22) and (2.24)) 

(5.1) 

As a result the total scattering cross section is infinite and the optical theorem does 
not apply. However the momentum transfer factor in (2.25) removes this singularity 
in the small-angle scattering, resulting in a finite momentum transfer cross section. 
The latter is related to the distribution of electric and magnetic field strengths by 

u P , ( k ) = ( F )  * k*/2& (5.2) 

is the expectation value of the Lorentz force (Schiff 1955, § 23), with respect to the 
extended scattering state with asymptotic behaviour (2.21), and U is the velocity operator 

(5.4) 
The result (5.2), which may be regarded as a generalisation of both the optical theorem 
and of Ehrenfest’s theorem, is established for solenoid scattering in appendix 2. The 
proof, which is based on that of Brown (1986), assumes that E, B, (I, and V 4  are 
everywhere well defined, so that pseudo-physical concepts such as ‘infinite’ potential 
barriers must be avoided or, at least, treated with proper care, e.g. by considering large, 
but finite, barriers. 

The magnetic-string solution due to Aharonov and Bohm (1959, equation (22)) 
corresponds to a momentum transfer cross section of 2/k. Applying (5.2) and (5.3) 
in the absence of a screening barrier (i.e. E = 0) one sees that if this non-zero utr is to 
be understood the magnetic field cannot consistently be regarded as confined to a 
(vanishingly small) region in which CL vanishes. This question is discussed by OP 

(§ I1 E) who reach equivalent conclusions by directly calculating the expectation value 
of the Lorentz force due to field penetration and showing it to account for the momentum 
exchanged in the scattering process, thus verifying the earlier suggestion of Peshkin 
et a1 (1961). 

If the solenoid is surrounded by a coaxial screening barriert at radius a > ro one 
may arrange, by making a large enough, that the contribution to (5.3) of the magnetic 
induction term is arbitrarily small. Then the force exerted on the barrier by the scattered 
particles, although dependent on the magnetic flux because of the latter’s appearance 
in the Hamiltonian (2.1) which determines +, is seen to arise entirely from the electric 
field E due to the barrierf. 

U = -ihV - qA. 

t To eliminate long-range electric fields it is convenient to envisage a barrier in the form of coaxial capacitor 
plates as described in $ 2 .  
$ Note that even when V + ~ 1 7  there must be some penetration of the barrier in order to account for (r,, # 0. 
This is physically obvious ij a local scattering force is to be experienced and, irrespective of locality, its 
truth is evident from ( 5 . 2 )  and (5.3), whether a = 0 or not. 
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6. Summary 

By applying partial-wave analysis ( 0  2) we extended the AB treatment of solenoid 
scattering to include the effects of screening and non-zero radius. The asymptotics of 
the wavefunction expressed in (2.21) and (2.22) display formal similarities to formulae 
appropriate to modified Coulomb scattering. 

As the screening potential is made infinite ( Q  3) the scattering amplitude and the 
force exerted by the scattered beam on the solenoid were found to retain a magnetic-flux 
dependence which becomes periodic in the enclosed flux. The magnitude of the 
incremental force due to the enclosed flux was estimated (equation (3.19)). In 4 4 the 
force was shown to persist when the condition of idealised impenetrability of the 
barriers was relaxed and the problems of directly observing it were considered. Finally 
( Q  5 )  the role of the local Maxwellian fields was considered and the effects of 
“penetrated’ flux were shown to be manifestations of the non-locality imparted to 
quantum phenomena by the extended nature of the wavefunction. 

Regardless of the practicability of observing them we have established a firm 
theoretical base for the existence of quantum forces due to enclosed fluxes under 
realistic conditions. 
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Appendix 1. The high-order phase shifts and Bessel functions 

We study the n dependence of A; as (nl+co. According to (2.10) and (2.6) A,, (we 
henceforth drop the superscript) depends on A, of ( 2 . 7 ~ ) .  To study the latter we find, 
directly from the defining series (2.7c), 

where we have written 5 = k2r i (  1 - u)/4. 
to the restriction In1 >>max{l, (a(, I l l } ,  
kr,A,, - In + a[ - n-’(a + 251nln-’)( 1 + 

I4-m 

(Al . l )  
+ O( n-2))  

On using (Al . l )  in ( 2 . 7 ~ )  we find, subject 

n ln -2  - an-’) + o( n-3) ,  (Al.2) 
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Further, using equations (3) and (5) of Watson (1944, 0 8.4), we have 
J,(kro) - (2.rrv)-"2(ekr0/2v)"(l +O(v-')) 

Y,(kr,) - (2.rrv)+'"(ekrO/2v)-"(1 +o(v- ' ) ) .  

"'CO 

(A1.3) 
"'03 

The leading terms of (A1.3) furnish good approximations for v >> max{l, k2ri} and 
corresponding expressions for J' and Y' follow by differentiating or using the appropri- 
ate recurrence relations. The above expressions when used in (2.6) and (2.10) show 
that A,, +. 0 as In1 + according to 

(A1.4) 

The remainder terms in (A1.4) depend on kr,, a and 5 and the expansion is valid 
provided n >>A =max{l, la/, 161, k2ri}. Very crudely (A1.4) implies the existence of 
K >> At such that 

In order to study the expansion (2.12) we also need to establish suitable bounds 
on H[,!;,,(kr). Starting from the recurrence relation (Watson 1944, 0 3.6) 

2v 
H?&(z) = - - H ~ ~ ' ( Z ) + - - H ~ y z )  

Z 

we can prove, for IzI L 2, real n L 1 and real p > 2 

(A1.6) 

(A1.7) 

To establish (A1.7), use (A1.6) with v = p  and p + 1 successively to prove the inequality 
for n = 1 and 2 respectively. Then use (A1.6) again to prove (A1.7) by induction, 
assuming it to hold for H;2,,-' and H;inP2. Since all Bessel functions satisfy the same 
recurrence relations the inequality also holds for J, Y and H"'. Now if a > 0 we can 
apply (A1.7) with p = 2 + a > 2 to obtain 

If a < 0, put a = [ a ]  +fu where 0 s f a  < 1 and integer [a] s -1. Also suppose n + a L 0 
so n 2 1. Then we may apply (A1.7) with p = 2 +fa > 2 to obtain 

(2+fa+n) !  
( 2 + f u ) !  

( 1  HY+),~ (kr) I + I ( kr) I ) k r > 2 , n ~ - [ a ] , a < O .  IHY2fm+,,(kr)l < 
(A1.9) 

The importance of (A1.8) and (A1.9) is that they allow complete separation of the r 
and n dependence; for using the asymptotic form (2.13) they yield for kr >> 1, n > IaI 

The remainders P, and Qa are O(r-') and do not depend on n. They may be made 
small by taking kr sufficiently large but it suffices to ensure IP, ( r ) l< 1, IQ,(r)l < 1, say. 
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This is assured if kr > x ,  where x, is determined by the behaviour of the finite-order 
Bessel functions in (A1.8) and (A1.9) but need not be explicitly evaluated. Then 
( A l .  10) become 

For the last two terms of (2.15) we find 
* 103 

= i C exp[in( 8 - 8,‘ + ~ / 2 ) ] i  exp(i8,) sin A , , H [ ~ ~ , , (  kr)  (Al.12) 
M * M  

and it is now trivial to show, using ( A l . l l )  and ( A l S ) ,  that r ” * ( Z ” , + X , )  appearing 
in (2.16) can be made arbitrarily small by choosing M large enough, this value of M 
being independent of r. 

Appendix 2 

The result represented by (5.2) and (5.3) is proved for a broad class of three-dimensional 
systems in Brown (1986); equations in that paper will be referred to by the prefix I. 
The extension to two dimensions is trivial but the problems raised by the divergence 
of the solenoid scattering amplitude at small scattering angles are more substantial. 
In particular the optical theorem of (I, equation (15 ) )  becomes meaningless. 

Consider the problem in three dimensions with the z axis being the axis of the 
solenoid. It suffices to consider normal incidence (kii), in which case the wavefunction 
(2.12) is appropriate. When 6 f 8,’ the corresponding asymptotic form (2.21) may be 
written 

(A2.2) 

and 

@ = r-”2 exp(ikr)t(k, k i ) .  (A2.3) 

We have rewritten the scattering amplitude from state k to k’ as t ( k ,  k ’ )  to conform 
to the notation of Brown (1986). On introducing the Lorentz force operator F of (I, 
equation (3 ) ) ,  integrating throughout the volume 7 of a circular cylinder of large length 
L and radius R and using Gauss’ theorem, we find (cf I, equation (5 ) )  for each Cartesian 
component j = 1 , 2  

r =  R 

2m r d 8 )  
(A2.4) 

where (cf I ,  equation (6))  

Qj = h2[  +, jV +* - +*V + , j  + +*V( $aj) - aj+V+* - 2+*+aja + 2+*+, j a ] .  (A2.5) 

We have written a = iqA/h and the commas denote differentiation. 
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To simplify the right-hand side of (A2.5) we write 

Q, - r dO = I J  + SI, lo2r 
where 

e,+tsa 

ek-46e 
I j  = IC-,, Q, r d6 S r ,  = J Qj . rdO 

(A2.6) 

(A2.7) 

and the former expression denotes the integral over the complete circle from which 
the sector of width SO, centred on 6 k ,  has been removed. Since the singularity at 6 = 6 k  

is excluded we may use the asymptotic form (A2.1) in I,. We find that only the first 
two terms of (A2.5) contribute as r -P CO, and these correspond to 

lt12 x, 
e + 2 n - m / 2  

I J  r - 0 0  - f i 2 1  e k + s e / 2  ‘ 
[ 2 k , ( k - r ^ ) + 2 k 2 - - + ( k + k . r ^ )  r r  

t 
exp(iG - ikr) + kxjr;:: exp( -iG + ikr) (A2.8) 

In the last term of (A2.8) we substitute G from (A2.2) and uset 

exp[ikr cos(e-ek)]  - ( 2 n - / k r ) ” 2 { e x p [ i ( k r - n - / 4 ) ] S ( e -  6,) 
r-m 

+exp[-i(kr- + q ] S ( e - O k + n - ) I .  (A2.9) 

Since O = 6 k  is excluded from (A2.8) the first delta function in (A2.9) does not 
contribute; neither does the second since (k  + k r^) = 0 when O - + 7~ = 0. The first 
term in (A2.8) is an elementary integral and we find (A2.4) becomes 

e,+zX-  m / 2  

lt(k, kf)I2k* i d 8  (A2.10) 
2 e,+se/z 

2m 1 3 k * ( F ) ,  Rz‘m 2 kjSI, - 4Rk’ sin 

where a sum over j = 1 ,2  is implied by repeated indices. 
It is not possible to let S O + O  in (A2.10) since the final term diverges. We remove 

the divergence by subtracting an integral with the same singularity, as follows. From 
the continuity of total particle flux$ (or from the identity (I, equation (4)) in which 
K is put equal to the identity operator and Gauss’ theorem is applied) we have, cf (A2.6) 

J + S J = O  (A2.11) 

where 

(A2.12) 

and 

T = $V$* - $*V$ + 2i$$*a. (A2.13) 

On using the asymptotic form (A2.1) we find, by similar steps to those which 

t Equation (A2.9), which i s  appropriate to the range - v <  B - 8, + H < H may be deduced by the method 
of stationary phase, as may its three-dimensional version ( I ,  equation (12)) .  
$ It is this conservation of total particle number in the incident and scattered beams which yields the optical 
theorem, in cases where t ( k ,  k )  exists. 
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led to (A2.8), 

(A2.14) 

It12 e,+2rr-se/2 

e, + se/ 2 
J = -i J [ 2k - i+  2k-+ (k + k * i )  exp(iG - ikr) + cc 

r 

Using (A2.9) we find, cf (A2.8), that the last term in (A2.14) does not contribute as 
r + CO and (A2.11) becomes 

e, + 2 li - se 2 

ik2SJ - 4k'R sin--2k' I t (k ,  ki)I2 de. (A2.15) 
R-oj Se 2 5 e k + s e / 2  

On adding this to (A2.10) we obtain 

(A2.16) 

in which 8' denotes the polar angle of k' and 

A(r, S e )  = le;-ye;22 (i ($V$* - $*V$) 

(A2.17) 

The singularity in t ( k ,  k ' )  is (see (2.22) and (2.24)) of type l / s in i (8-ek)  so that 
the corresponding singularity in It12 is cancelled by ( k  - k ' -  1) = -2 sin2+( 0 - &), Con- 
sequently the first term on the left-hand side of (A2.16) has a finite limit as S 8 + 0  
which we now investigate. This limit cannot be evaluated by letting SO + 0 independent 
of R since (A2.16) depends on the asymptotic form (A2.1), which is valid only when 
kR[ 1 -cos( 6 - e,)] >> 1, i.e. when 

&I >> R-'12. (A2.18) 

We must therefore let R + CO and 68 + 0 together and to achieve this we may suppose 

68 - R v- ' /2  0<7/<;. (A2.19) 

1 1 
k3 

- - [ ( k  - V $)V$* - $*V( k - V$)  - ( k  - a )  $V$*] - r de. 

A A  

With SO + 0 we trivially evaluate the integral (A2.17) to obtain 

= RSeP,. $* --) a$ +-$ ($* $--$ $)] 
r =  R.R=Br 

(A2.20) 

As the first term on the left-hand side of (A2.16) depends only on SO and the 
second depends only on R, and since the respective limits obviously exist, it follows 
that the limit of A ( R ,  Se) exists whenever (A2.19) is obeyed and furthermore that this 
limit is independent of 1) in the range 0 < r] < 4. The only possibility, which establishes 
(5.2) as the limit of (A2.16), is 

lim A(R,  S e )  = 0. 
R-o j .68 -0  

(A2.21) 

This may be seen by choosing, e.g., r] = so that (A2.19) yields R68 - R7/8. Then in 
order that A remain finite (A2.20) requires P+ - R-'-'/', E > 0. Finally choosing r] = $, 
say, we have RSeP, - R3/4P, - R-'"'' +D 0. 
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